4.0 Article

Surface-enhanced Raman spectral biomarkers correlate with Ankle Brachial Index and characterize leg muscle biochemical composition of patients with peripheral arterial disease

Journal

PHYSIOLOGICAL REPORTS
Volume 2, Issue 9, Pages -

Publisher

WILEY
DOI: 10.14814/phy2.12148

Keywords

Linear discriminant analysis; muscle biochemistry; partial least squares regression; peripheral arterial disease; Raman spectroscopy

Categories

Funding

  1. Nebraska Research Initiative grant from University of Nebraska-Lincoln
  2. National Institutes of Health [R01AG034995]
  3. MRI grant from National Science Foundation [CMMI 1126208]
  4. Charles and Mary Heider Fund for Excellence in Vascular Surgery
  5. Alexander S. Onassis Public Benefit Foundation

Ask authors/readers for more resources

Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. This injury includes altered metabolic processes, damaged organelles, and compromised bioenergetics in the affected muscles. The objective of this study was to explore the association of Raman spectral signatures of muscle biochemistry with the severity of atherosclerosis in the legs as determined by the Ankle Brachial Index (ABI) and clinical presentation. We collected muscle biopsies from the gastrocnemius (calf muscle) of five patients with clinically diagnosed claudication, five patients with clinically diagnosed critical limb ischemia (CLI), and five control patients who did not have PAD. A partial least squares regression (PLSR) model was able to predict patient ABI with a correlation coefficient of 0.99 during training and a correlation coefficient of 0.85 using a full cross-validation. When using the first three PLS factor scores in combination with linear discriminant analysis, the discriminant model was able to correctly classify the control, claudicating, and CLI patients with 100% accuracy, using a full cross-validation procedure. Raman spectroscopy is capable of detecting and measuring unique biochemical signatures of skeletal muscle. These signatures can discriminate control muscles from PAD muscles and correlate with the ABI and clinical presentation of the PAD patient. Raman spectroscopy provides novel spectral biomarkers that may complement existing methods for diagnosis and monitoring treatment of PAD patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available