4.7 Article

Trends in Extreme Rainfall Frequency in the Contiguous United States: Attribution to Climate Change and Climate Variability Modes

Journal

JOURNAL OF CLIMATE
Volume 31, Issue 1, Pages 369-385

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-17-0106.1

Keywords

-

Funding

  1. NOAA-CREST [NA11SEC4810004]
  2. NSF [1360446]

Ask authors/readers for more resources

This study presents a systematic analysis for identifying and attributing trends in the annual frequency of extreme rainfall events across the contiguous United States to climate change and climate variability modes. A Bayesian multilevel model is developed for 1244 rainfall stations simultaneously to test the null hypothesis of no trend and verify two alternate hypotheses: trend can be attributed to changes in global surface temperature anomalies or to a combination of well-known cyclical climate modes with varying quasiperiodicities and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool information across stations and reduce the parameter estimation uncertainty, hence identifying the trends better. The choice of the best alternate hypothesis is made based on the Watanabe-Akaike information criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed in 742 of the 1244 stations. Trends in 409 of these stations can be attributed to changes in global surface temperature anomalies. These stations are predominantly found in the U.S. Southeast and Northeast climate regions. The trends in 274 of these stations can be attributed to El Nino-Southern Oscillation, the North Atlantic Oscillation, the Pacific decadal oscillation, and the Atlantic multidecadal oscillation along with changes in global surface temperature anomalies. These stations are mainly found in the U.S. Northwest, West, and Southwest climate regions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available