4.7 Article

Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge

Journal

GEOLOGY
Volume 43, Issue 1, Pages 51-54

Publisher

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G36113.1

Keywords

-

Categories

Funding

  1. German Research Foundation (DFG) [RU1469/2-1]

Ask authors/readers for more resources

High-temperature (> 300 degrees C) off-axis hydrothermal systems found along the slow-spreading Mid-Atlantic Ridge are apparently consistently located at outcropping fault zones. While preferential flow of hot fluids along highly permeable, fractured rocks seems intuitive, such efficient flow inevitably leads to the entrainment of cold ambient seawater. The temperature drop this should cause is difficult to reconcile with the observed high-temperature black smoker activity and formation of associated massive sulfide ore deposits. Here we combine newly acquired seismological data from the high-temperature, off-axis Logatchev 1 hydrothermal field (LHF1) with numerical modeling of hydrothermal flow to solve this apparent contradiction. The data show intense off-axis seismicity with focal mechanisms suggesting a fault zone dipping from LHF1 toward the ridge axis. Our simulations predict high-temperature venting at LHF1 only for a limited range of fault widths and permeability contrasts, expressed as the fault's relative transmissibility (the product of the two parameters). The relative transmissibility must be sufficient to capture a rising hydrothermal plume and redirect it toward LHF1 but low enough to prevent extensive mixing with ambient cold fluids. Furthermore, the temperature drop associated with any high permeability zone in heterogeneous crust may explain why a significant part of hydrothermal discharge along slow-spreading ridges occurs at low temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available