4.7 Article

Perspectives for the recovery of critical elements from future energy-efficient refrigeration materials

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 197, Issue -, Pages 232-241

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2018.06.185

Keywords

Magnetocaloric material; Magnetic refrigeration; Recycling; Rare earth elements; Hydrometallurgy; Cyanex 923

Ask authors/readers for more resources

Rare earth elements (REEs) are the core of many future-sustainable technologies. One example is magnetocaloric refrigeration, an emerging field essential for the efficient use of energy. Future adoption of this technology will require adequate processing of end-of-life units and production residues. Currently, REEs have very high supply risk, and their recovery rates are below 1%. So far, their recovery from magnetocaloric materials has not been addressed. This work reports on a leaching and solvent extraction process to recover REEs from genuine magnetocaloric materials comprising cerium, iron, lanthanum, manganese and silicon. Leaching was studied using nitric, hydrochloric and sulfuric acid solutions, with optimizations in terms of temperature, acid concentration and solid-to-liquid ratio. Recovery of REEs from nitric, hydrochloric, and sulfuric acid leachates was investigated with three types of solvating extractants: tributyl phosphate (TBP), trioctylphosphine oxides (Cyanex 923) and tetraoctyl digylcol amide (TODGA). Extraction was most effective from nitric acid media. Very good extraction selectivity between REEs and non-REEs was achieved with TODGA. Cyanex 923 showed better extraction efficiency than TBP, and performed best in aliphatic diluents. A separation factor of 3.3 between cerium and lanthanum was achieved with 1 mol/L Cyanex 923 in Isopar L. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available