4.7 Article

Adiabatic Connection without Coupling Constant Integration

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 14, Issue 6, Pages 2979-2990

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.8b00067

Keywords

-

Funding

  1. National Science Foundation (NSF)
  2. NSF Division of Materials Research [DMR-1553022]
  3. NSF through major research instrumentation Grant [CNS-09-58854]

Ask authors/readers for more resources

Using a second-order approximation to Random Phase Approximation renormalized (RPAr) many-body perturbation theory for the interacting density-density response function, we have developed a so-called higher-order terms (HOT) approximation for the correlation energy. In combination with the first-order RPAr correction, our new method faithfully captures the infinite-order correlation for a given exchange-correlation kernel, yielding errors of the total correlation energy on the order of 1% or less for most systems. For exchange-like kernels, our new method has the further benefit that the coupling-strength integration can be completely eliminated resulting in a modest reduction in computational cost compared to the traditional approach. When the correlation energy is accurately reproduced by the HOT approximation, structural properties and energy differences are also accurately reproduced, as we demonstrate for several periodic solids and some molecular systems. Energy differences involving fragmentation are challenging for the HOT method, however, due to errors that may not cancel between a composite system and its constituent pieces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available