4.7 Article

Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 14, Issue 4, Pages 2127-2136

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.8b00014

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) through the Priority Programme (Control of London Dispersion Interactions in Molecular Chemistry) [1807]
  2. DFG through the Transregional Collaborative Research Centre [88]

Ask authors/readers for more resources

The performance of the Bethe-Salpeter equation (BSE) approach for the first-principles computation of singlet and triplet excitation energies of small organic, closed-shell molecules has been assessed with respect to the quasiparticle energies used on input, obtained at various levels of GW theory. In the corresponding GW computations, quasiparticle energies have been computed for all orbital levels by means of using full spectral functions. The assessment reveals that, for valence excited states, quasiparticle energies obtained at the levels of eigenvalue-only self-consistent (evGW) or quasiparticle self-consistent theory (qsGW) are required to obtain results of comparable accuracy as in time dependent density-functional theory (TDDFT) using a hybrid functional such as PBEO. In contrast to TDDFT, however, the BSE approach performs well not only for valence excited states but also for excited states with Rydberg or charge-transfer character. To demonstrate the applicability of the BSE approach, computation times are reported for a set of aromatic hydrocarbons. Furthermore, examples of computations of ordinary photoabsorption and electronic circular dichroism spectra are presented for (C-60)(2) and C-84, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available