4.7 Article

Perspective: Chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 149, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5037683

Keywords

-

Funding

  1. Swiss National Science Foundation

Ask authors/readers for more resources

The dynamics of unfolded proteins are important both for the process of protein folding and for the behavior of intrinsically disordered proteins. However, methods for investigating the global chain dynamics of these structurally diverse systems have been limited. A versatile experimental approach is single-molecule spectroscopy in combination with Forster resonance energy transfer and nanosecond fluorescence correlation spectroscopy. The concepts of polymer physics offer a powerful framework both for interpreting the results and for understanding and classifying the properties of unfolded and intrinsically disordered proteins. This information on long-range chain dynamics can be complemented with spectroscopic techniques that probe different length scales and time scales, and integration of these results greatly benefits from recent advances in molecular simulations. This increasing convergence between the experiment, theory, and simulation is thus starting to enable an increasingly detailed view of the dynamics of disordered proteins. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available