4.5 Review

Improved drug therapy: triangulating phenomics with genomics and metabolomics

Journal

HUMAN GENOMICS
Volume 8, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s40246-014-0016-9

Keywords

Individualized medicine; Genomics; Metabolomics; Omics; Personalized medicine; Phenomics; Systems biology; Transcriptomics

Funding

  1. National Institutes of Health [K23 GM110516, P30 ES06096, R24 AA022057, R01 EY14390]
  2. Emergency Medicine Foundation Research Training Grant

Ask authors/readers for more resources

Embracing the complexity of biological systems has a greater likelihood to improve prediction of clinical drug response. Here we discuss limitations of a singular focus on genomics, epigenomics, proteomics, transcriptomics, metabolomics, or phenomics-highlighting the strengths and weaknesses of each individual technique. In contrast, 'systems biology' is proposed to allow clinicians and scientists to extract benefits from each technique, while limiting associated weaknesses by supplementing with other techniques when appropriate. Perfect predictive modeling is not possible, whereas modeling of intertwined phenomic responses using genomic stratification with metabolomic modifications may greatly improve predictive values for drug therapy. We thus propose a novel-integrated approach to personalized medicine that begins with phenomic data, is stratified by genomics, and ultimately refined by metabolomic pathway data. Whereas perfect prediction of efficacy and safety of drug therapy is not possible, improvements can be achieved by embracing the complexity of the biological system. Starting with phenomics, the combination of linking metabolomics to identify common biologic pathways and then stratifying by genomic architecture, might increase predictive values. This systems biology approach has the potential, in specific subsets of patients, to avoid drug therapy that will be either ineffective or unsafe.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available