4.5 Article

MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2

Journal

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
Volume 22, Issue 4, Pages 2357-2367

Publisher

WILEY
DOI: 10.1111/jcmm.13529

Keywords

glioma; miR-129-5p; TGIF2

Funding

  1. First Affiliated Hospital of Xinxiang Medical University [xyyfy2014BS-004]

Ask authors/readers for more resources

This study purposed to explore the correlation between miR-129-5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR-129-5p expression levels in glioma tissues and cells were measured by qRT-PCR. CCK-8 assay, flow cytometer, transwell assay and wound-healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual-luciferase reporting assay was performed to confirm the targeted relationship between miR-129-5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR-129-5p on tumorigenesis in vivo. MiR-129-5p expression was down-regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual-luciferase reporter assay validated the targeting relation between miR-129-5p and TGIF2. Overexpression of miR-129-5p or down-regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR-129-5p overexpression repressed the tumour development in vivo. MiR-129-5p and TGIF2 had opposite biological functions in glioma cells. MiR-129-5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available