4.5 Article

Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 106, Issue 4, Pages 865-875

Publisher

WILEY
DOI: 10.1002/jbm.a.36323

Keywords

3D printing; hydrogel; injectable; dynamic covalent chemistry; hydrazone

Funding

  1. American Heart Association through an Established Investigator Award
  2. National Institutes of Health [F30 HL134255]
  3. National Science Foundation Graduate Research Fellowship

Ask authors/readers for more resources

The fabrication of three-dimensional (3D) scaffolds is indispensable to tissue engineering and 3D printing is emerging as an important approach towards this. Hydrogels are often used as inks in extrusion-based 3D printing, including with encapsulated cells; however, numerous challenging requirements exist, including appropriate viscosity, the ability to stabilize after extrusion, and cytocompatibility. Here, we present a shear-thinning and self-healing hydrogel crosslinked through dynamic covalent chemistry for 3D bioprinting. Specifically, hyaluronic acid was modified with either hydrazide or aldehyde groups and mixed to form hydrogels containing a dynamic hydrazone bond. Due to their shear-thinning and self-healing properties, the hydrogels could be extruded for 3D printing of structures with high shape fidelity, stability to relaxation, and cytocompatibility with encapsulated fibroblasts (>80% viability). Forces for extrusion and filament sizes were dependent on parameters such as material concentration and needle gauge. To increase scaffold functionality, a second photocrosslinkable interpenetrating network was included that was used for orthogonal photostiffening and photopatterning through a thiol-ene reaction. Photostiffening increased the scaffold's modulus (approximate to 300%) while significantly decreasing erosion (approximate to 70%), whereas photopatterning allowed for spatial modification of scaffolds with dyes. Overall, this work introduces a simple approach to both fabricate and modify 3D printed scaffolds. (c) 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 865-875, 2018.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available