4.7 Article

The Release 6 reference sequence of the Drosophila melanogaster genome

Journal

GENOME RESEARCH
Volume 25, Issue 3, Pages 445-458

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gr.185579.114

Keywords

-

Funding

  1. NIH [P50 HG00750, R01 HG00747, R01 HG002673, R01 GM064590]
  2. U.S. Department of Energy [DE-AC0376SF00098, DE-AC02-05CH11231]
  3. University of California
  4. Russian Federation [13-04-40137, 12-04-00874]
  5. Institut Pasteur-Fondazione Cenci Bolognetti
  6. Ministerio de Economia y Competitividad [BFU2011-30295-C02-01]
  7. Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)
  8. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Ask authors/readers for more resources

Drosophila melanogaster plays all important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report all improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available