4.6 Article

Synthesis and thermal properties of poly(acrylonitrile-co-allyl glycidyl ether)-graft-methoxypoly(ethylene glycol) copolymers as novel solid-solid phase-change materials for thermal energy storage

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 135, Issue 35, Pages -

Publisher

WILEY
DOI: 10.1002/app.46641

Keywords

copolymers; crystallization; phase behavior; thermal properties; thermogravimetric analysis (TGA)

Funding

  1. National Science Foundation of China [51373027, 51403028]

Ask authors/readers for more resources

We synthesized a series of poly(acrylonitrile-co-allyl glycidyl ether)-graft-methoxypoly(ethylene glycol) (PAA-g-MPEG) copolymers as novel polymeric solid-solid phase-change materials by grafting methoxypoly(ethylene glycol) (MPEG) to the main chain of poly(acrylonitrile-co-allyl glycidyl ether) (PAA). PAA was the skeleton, and MPEG was a functional side chain, which stored and released heat during its phase-transition process. Fourier transform infrared spectroscopy and H-1-NMR spectroscopy analysis were performed to investigate the chemical structures. The crystalline morphology and crystal structures were also measured with polarized optical microscopy and X-ray diffraction. Moreover, the thermal-energy-storage properties, thermal stability, and thermal reliability of the PAA-g-MPEG copolymers were characterized by differential scanning calorimetry and thermogravimetric analysis (TGA) methods. These analysis results indicate that the MPEG chains were successfully grafted onto PAA, and we found that the PAA-g-MPEG copolymers had typical solid-solid phase-transition temperatures in the range 11-54 degrees C and high latent heat enthalpies between 44 and 85 J/g. In addition, the as-prepared PAA-g-MPEG copolymers showed reusability and thermal reliability, as shown by the thermal cycle testing and TGA curves. Therefore, the synthesized PAA-g-MPEG copolymers have considerable potential for thermal energy storage. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46641.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available