4.6 Article

Low noise ultraviolet photodetector with over 100% enhanced lifetime based on polyfluorene copolymer and ZnO nanoparticles

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 135, Issue 31, Pages -

Publisher

WILEY
DOI: 10.1002/app.46533

Keywords

applications; conducting polymers; nanoparticles; nanowires and nanocrystals; optical and photovoltaic applications; sensors and actuators

Ask authors/readers for more resources

Stability and noise current of a hybrid UV photodetector with inverted planar heterojunction (PHJ) structure indium-tin-oxide/ZnO nanoparticles (NPs)/poly[9,9-dioctyl-fluorene-2,7-diyl]-copoly[diphenyl-p-tolyl-amine-4,4-diyl] (BFE)/Ag are investigated. ZnO NPs as the acceptor and BFE as the donor were deposited as the active layer. Under UV light illumination, light to dark current ratio of about 10(2) is observed at a very low bias voltage of -1.5 V. The spectral response of the device is located near UV region with a maximum responsivity of similar to 57 mA/W at wavelength of 350 nm. In particular, the prepared device exhibits remarkably higher photoresponse (similar to 350%) and stability (similar to 115%) enhancement under ambient condition compared to the reference device. In addition, the presented results show that the noise current of our device with PHJ structure is about an order of magnitude lower than that of commonly used bulk heterojunction system. (C) 2018 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available