4.6 Article

Calcium carbonate and wood reinforced hybrid PVC composites

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 135, Issue 22, Pages -

Publisher

WILEY
DOI: 10.1002/app.46317

Keywords

cellulose and other wood products; differential scanning calorimetry; poly(vinyl chloride); spectroscopy; structure-property relationships

Funding

  1. grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI [PN-II-RU-TE-2014-4-0173]
  2. structural funds project PRO-DD (POS-CCE) [O.2.2.1, 123, SMIS 2637, 11/2009]

Ask authors/readers for more resources

In this article, poly(vinyl chloride) (PVC) sandwich-structured hybrid composites with amorphous calcium carbonate and wood-filled cores were obtained by compression molding. It has been determined that wood addition up to a weight ratio of 33% reported to the total filler amount is beneficial in improving both the inter-filler and filler-matrix interfacial adhesion, which alongside with the promoting of the amorphous PVC matrix crystallization is responsible for an increase up to 34% in the flexural strength of the composites, compared to unfilled PVC. The hybrid filled composites present up to 35% lower friction coefficients and up to 20% higher Brinell hardness values than the composites filled with calcium carbonate alone. Subsequently, wood addition determines an increase in the oxidation onset temperature for PVC and an increase with up to 20% in the sound and thermal-insulative properties of the composites, compared to unfilled PVC. The dominating dispersive part of the composites surface energy aids in improving the mass and dimensional stability of the assembly to both water and dilute hydrochloric acid aqueous solutions. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46317.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available