4.5 Article

Effects of triceps surae muscle strength and tendon stiffness on the reactive dynamic stability and adaptability of older female adults during perturbed walking

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 124, Issue 6, Pages 1541-1549

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00545.2017

Keywords

aging; falls; margin of stability; muscle strength; tendon stiffness

Funding

  1. Forschungsservicestelle
  2. German Sport University Cologne (Hochschulinterne Forschungsforderung and Graduate Scholarship in Natural Science)
  3. German Society for Biomechanics
  4. Kootstra Talent Fellowship awarded by the Centre for Research Innovation, Support and Policy of Maastricht University Medical Centre +
  5. NUTRIM Graduate Programme of Maastricht University Medical Centre +

Ask authors/readers for more resources

This study aimed to examine whether the triceps surae (TS) muscle-tendon unit (MTU) mechanical properties affect gait stability and its reactive adaptation potential to repeated perturbation exposure in older adults. Thirty-four older adults each experienced eight separate unexpected perturbations during treadmill walking, while a motion capture system was used to determine the margin of stability (MoS) and base of support (BoS). Ankle plantar flexor muscle strength and Achilles tendon (AT) stiffness were analyzed using ultrasonography and dynamometry. A median split and separation boundaries classified the subjects into two groups with GroupStrong (n = 10) showing higher ankle plantar flexor muscle strength (2.26 +/- 0.17 vs. 1.47 +/- 0.20 N center dot m/kg, means +/- SD: P < 0.001) and AT stiffness (544 +/- 75 vs. 429 +/- 86 N/mm; P = 0.004) than GroupWeak in = 12). The first perturbation caused a negative Delta MoS (MoS in relation to unperturbed baseline walking) at touchdown of perturbed step (Pert(R)), indicating an unstable position. GroupStrong required four recovery steps to return to Delta MoS zero level, whereas GroupWeak was unable to return to baseline within the analyzed steps. However, after repeated perturbations, both groups increased Delta MoS at touchdown of Pert(R) with a similar magnitude. Significant correlations between Delta BoS and Delta MoS at touchdown of the first recovery step and TS MTU capacities (0.41 < r < 0.57: 0.006 < P < 0.048) were found. We conclude that older adults with TS muscle weakness have a diminished ability to control gait stability during unexpected perturbations, increasing their fall risk, but that degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations. NEW & NOTEWORTHY Triceps surae muscle weakness and a more compliant Achilles tendon partly limit older adults' ability to effectively enlarge the base of support and recover dynamic stability after an unexpected perturbation during walking, increasing their fail risk. However, the degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available