4.5 Article

Glutamate dehydrogenase: role in regulating metabolism and insulin release in pancreatic β-cells

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 125, Issue 2, Pages 419-428

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01077.2017

Keywords

glutamate dehydrogenase; insulin; metabolic model; metabolic regulation; pancreatic beta-cells

Ask authors/readers for more resources

Regulation of insulin release and glucose homeostasis by pancreatic beta-cells is dependent on the metabolism of glucose by glucokinase (GK) and the influence of that activity on oxidative phosphorylation. Genetic alterations that result in hyperactivity of mitochondrial glutamate dehydrogenase (GDH-1) can cause hypoglycemia-hyperammonemia following high protein meals, but the role of GDH-1 remains poorly understood. GDH-1 activity is strongly inhibited by GTP, to near zero in the absence of ADP, and cooperatively activated (n = 2.3) by ADP. The dissociation constant for ADP is near 200 mu M in vivo, but leucine and its nonmetabolized analog 2-amino-2-norbornane-carboxylic acid (BCH) can activate GDH-1 by increasing the affinity for ADP. Under physiological conditions, as [ADP] increases GDH-1 activity remains very low until similar to 35 mu M (threshold) and then increases rapidly. A model for GDH-1 and its regulation has been combined with a previously published model for glucose sensing that coupled GK activity and oxidative phosphorylation. The combined model (GK-GDH-core) shows that GK activity determines the energy state ([ATP]/[ADP][Pi]) in beta-cells for glucose concentrations > 5 mM ([ADP] < 35 mu M). As glucose falls < 5 mM the [ADP]-dependent increase in GDH-1 activity prevents [ADP] from rising above similar to 70 mu M. Thus, GDH-1 dynamically buffers beta-cell energy metabolism during hypoglycemia. maintaining the energy state and the basal rate of insulin release. GDH-1 hyperactivity suppresses the normal increase in [ADP] in hypoglycemia. This leads to hypoglycemia following a high protein meal by increasing the basal rate of insulin release (beta-cells) and decreasing glucagon release (alpha-cells). NEW & NOTEWORTHY A model of beta-cell metabolism and regulation of insulin release is presented. The model integrates regulation of oxidative phosphorylation, glucokinase (GK), and glutamate dehydrogenase (GDH-1). GDH-1 is near equilibrium under physiological conditions, but the activity is inhibited by GTP. In hypoglycemia, however, GK activity is low and [ADP], a potent activator of GDH-1, increases. Reducing equivalents from GDH dynamically buffers the intramitochondrial [NADH]/[NAD(+)], and thereby the energy state, preventing hypoglycemia-induced substrate deprivation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available