4.6 Article

Investigations on the defect dipole induced pyroelectric current in multiferroic GdMnO3 system

Journal

JOURNAL OF APPLIED PHYSICS
Volume 123, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5001245

Keywords

-

Funding

  1. DST-SERB [EMR/2016/002370]
  2. LAFICS

Ask authors/readers for more resources

Pyroelectric current measurements on the orthorhombic GdMnO3 polycrystalline sample are done to explore the intrinsic and extrinsic contributions. The measurements reveal poling temperature dependent pyrocurrent peaks at 20, 50 and 108 K. The pyrocurrent at 20K and at 108K are attributed to ferroelectric transition induced by the incommensurate spiral magnetic ordering of Mn spins and the release of trapped charges from the localized states, respectively. A detailed analysis on the broad pyrocurrent signal at 50K suggests that it could be attributed to the thermally stimulated depolarization current effect due to the relaxation of defect dipoles induced by negatively charged Mn3+ ions and excess holes localized at Mn4+ sites. Importantly, the effect of the electric field due to the defect dipoles on the ferroelectric state is highlighted. The temperature dependent dielectric measurements under the magnetic field brought out the correlation between pyroelectric and dielectric properties. The influence of poling temperature dependent extrinsic effects on pyrocurrent suggests the choice of poling temperature on the study of polarization and the resultant multiferroicity in a spin-driven ferroelectric rare earth manganite system. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available