4.6 Article

Recombination activity of threading dislocations in GaInP influenced by growth temperature

Journal

JOURNAL OF APPLIED PHYSICS
Volume 123, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5018849

Keywords

-

Funding

  1. National Science Foundation [DMR-08-19762]

Ask authors/readers for more resources

Room-temperature non-radiative recombination is studied at single dislocations in Ga0.5In0.5P quantum wells grown on metamorphic templates using cathodoluminescence and electron channeling contrast imaging. An analysis of the light emission intensity profiles around single dislocations reveals that the average recombination strength of a dislocation decreases by a factor of four and seven as a result of decreasing growth temperature of the GaInP quantum well from 725 to 675 and 625 degrees C, respectively. This reduction occurs despite little change in the diffusion length, precluding the prospect of inducing carrier localization by ordering and phase separation in GaInP at lower growth temperatures. These observations are rationalized by the premise that point defects or impurities are largely responsible for the recombination activity of dislocations, and the extent of decoration of the dislocation core decreases with temperature. Preliminary evidence for the impact of the Burgers vector is also presented. The lowest growth temperature, however, negatively impacts light emission away from dislocations. Carrier recombination in the bulk and at dislocations needs to be considered together for metamorphic devices, and this work can lead to new techniques to limit non-radiative recombination. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available