4.3 Article

Organization and evolution of a novel cervid satellite DNA with yeast CDEI-like repeats

Journal

ZOOLOGICAL STUDIES
Volume 53, Issue -, Pages -

Publisher

BIODIVERSITY RESEARCH CENTER, ACAD SINICA
DOI: 10.1186/s40555-014-0025-3

Keywords

Indian muntjac; Centromeric satellite DNA; Ancient centromeric DNA; Concerted evolution; CDEI element; Chromosome microdissection

Categories

Funding

  1. National Sciences Council, Taiwan [NSC-97-2311-B-040-003-MY3, NSC-99-2314-B-039-003-MY2]

Ask authors/readers for more resources

Background: It has been proposed that pericentromeric satellite DNA arises from the progressive proximal expansion of ancient centromeric DNA. In an attempt to recover putative ancestral centromeric DNA, we microdissected the pericentromeric/centromeric DNA from the chromosome X + 3 of Indian muntjac (Muntiacus muntjak vaginalis) and constructed a microclone-library of the X + 3 centromeric DNA. Results: A new cervid satellite DNA element, designated as satellite VI, was isolated from this library. Fluorescence in situ hybridization (FISH) studies revealed that satellite VI is predominately located on the distal pericentromeric region of the Indian muntjac chromosome X + 3 and on the pericentromeres of several Old World deer species studied. Its sequence is organized as 11-bp monomeric (ATCACGTGGGA) tandem repeats. Further sequencing on a BAC clone of Indian muntjac harboring this repeat showed that an array of this repeat stretches over approximately 5 kb followed by approximately 3 kb of interspersed repetitive sequences, such as long interspersed elements (LINEs), short interspersed elements (SINEs), and long terminal repeats (LTRs). Conclusions: Based on the chromosomal localization, genomic and sequence organization, and copy numbers of satellite VI in deer species studied, we postulate that this newly found satellite DNA could be a putative ancient cervidic centromeric DNA that is still preserved in some Old World deer. Interestingly, the first eight nucleotides of the 11-bp monomeric consensus sequences are highly conserved and identical to the CDEI element in the centromere of the budding yeast Saccharomyces cerevisiae. The centromeric/pericentromeric satellite DNA harboring abundant copies of CDEI sequences is the first found in a mammalian species. Several zipper-like d (GGGA)(2) motifs were also found in the (ATCACGTGGGA)n repeat of satellite VI DNA. Whether the satellite VI is structurally and functionally correlated with the CDEI of centromere of budding yeast and whether a zipper-like structure forms in satellite VI require further studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available