4.7 Article

A climatology of dust emission events from northern Africa using long-term surface observations

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 14, Issue 16, Pages 8579-8597

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-14-8579-2014

Keywords

-

Funding

  1. European Research Council [257543]
  2. Deutsche Forschungsgemeinschaft
  3. Open Access Publishing Fund of Karlsruhe Institute of Technology

Ask authors/readers for more resources

Long-term (1984-2012) surface observations from 70 stations in the Sahara and Sahel are used to explore the diurnal, seasonal and geographical variations in dust emission events and thresholds. The frequency of dust emission (FDE) is calculated using the present weather codes of SYNOP reports. Thresholds are estimated as the wind speed for which there is a 50% probability of dust emission and are then used to calculate strong wind frequency (SWF) and dust uplift potential (DUP), where the latter is an estimate of the dust-generating power of winds. Stations are grouped into six coherent geographical areas for more in-depth analysis. FDE is highest at stations in Sudan and overall peaks in spring north of 23 degrees N. South of this, where stations are directly influenced by the summer monsoon, the annual cycle in FDE is more variable. Thresholds are highest in northern Algeria, lowest in the latitude band 16-21 degrees N and have greatest seasonal variations in the Sahel. Spatial variability in thresholds partly explain spatial variability in frequency of dust emission events on an annual basis. However, seasonal variations in thresholds for the six grouped areas are not the main control on seasonal variations in FDE. This is demonstrated by highly correlated seasonal cycles of FDE and SWF which are not significantly changed by using a fixed, or seasonally varying, threshold. The likely meteorological mechanisms generating these patterns such as low-level jets and haboobs are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available