4.7 Article

All-trans retinoic acid increases the expression of oxidative myosin heavy chain through the PPARδ pathway in bovine muscle cells derived from satellite cells

Journal

JOURNAL OF ANIMAL SCIENCE
Volume 96, Issue 7, Pages 2763-2776

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/jas/sky155

Keywords

all-trans retinoic acid; bovine satellite cells; cell culture; PPAR delta

Funding

  1. Gordon W. Davis Regents Chair in Meat Science
  2. Muscle Biology Endowment at Texas Tech University, Lubbock

Ask authors/readers for more resources

All-trans retinoic acid (ATRA) has been associated with various physiological phenomenon in mammalian adipose tissue and skeletal muscle. We hypothesized that ATRA may affect skeletal muscle fiber type in bovine satellite cell culture through various transcriptional processes. Bovine primary satellite cell (BSC) culture experiments were conducted to determine dose effects of ATRA on expression of genes and protein levels related to skeletal muscle fiber type and metabolism. The semimembranosus from crossbred steers (n = 2 steers), aged approximately 24 mo, were used to isolate BSC for 3 separate assays. Myogenic differentiation was induced using 3% horse serum upon cultured BSC with increasing doses (0, 1, 10, 100, and 1,000 nM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of protein kinase B (Akt), AMP-activated protein kinase alpha (AMPK), glucose transporter 4 (GLUT4), myogenin, lipoprotein lipase (LPL), myosin heavy chain (MHC) I, MHC IIA, MHC IIX, insulin like growth factor-1 (IGF-1), Peroxisome proliferator activated receptor gamma (PPAR gamma), PPAR delta, and Smad transcription factor 3 (SMAD3) mRNA relative to ribosomal protein subunit 9 (RPS9). The mRNA expression of LPL was increased (P < 0.05) with 100 and 1,000 nM of ATRA. Expression of GLUT4 was altered (P < 0.05) by ATRA. The treatment of ATRA (1,000 nM) also increased (P < 0.05) mRNA gene expression of SMAD3. The gene expression of both PPAR delta and PPAR gamma were increased (P < 0.05) with 1,000 nM of ATRA. Protein level of PPAR delta was also affected (P < 0.05) by 1,000 nM of ATRA and resulted in a greater (P < 0.05) protein level of PPAR delta compared to CON. All-trans retinoic acid (10 nM) increased gene expression of MHC I (P < 0.05) compared to CON. Expression of MHC IIA was also influenced (P < 0.05) by ATRA. The mRNA expression of MHC IIX was decreased (P < 0.05) with 100 and 1,000 nM of ATRA. In muscle cells, ATRA may cause muscle fibers to transition towards the MHC isoform that prefers oxidative metabolism, as evidenced by increased expression of genes associated with the MHC I isoform. These changes in MHC isoforms appeared to be brought about by changing PPAR delta gene expression and protein levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available