4.7 Article

Waste and virgin high-density poly(ethylene) into renewable hydrocarbons fuel by pyrolysis-catalytic cracking with a CoCO3 catalyst

Journal

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
Volume 134, Issue -, Pages 150-161

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jaap.2018.06.003

Keywords

HD-PE; Pyrolysis-catalytic cracking; Renewable hydrocarbons; CoCO3 catalysts; 2D-GCxGC/TOFMS

Ask authors/readers for more resources

Conversion of waste and virgin high-density poly(ethylene) (HD-PE) into renewable fuel/petrochemicals were carried out using a basic cobalt carbonate (CoCO3) catalysts by a pyrolysis-catalytic cracking process. The pyrolysis-catalytic cracking process provides an alternative clean fuel and also minimizes to the environmental problems by waste plastics. Renewable hydrocarbons fuel were analyzed by 2D-GC x GC/TOFMS, FT-IR spectroscopy, H-1 NMR spectroscopy, CHNS/O analyzer, inductively coupled plasma (ICP) and its results found absolutely good hydrocarbon compounds as (in fuel were petrochemicals obtained from virgin plastic and waste HD-PE). Catalytic conversion rates of four experiments as virgin HD-PE into renewable hydrocarbons fuel was found 80%, 84.40%, 88.22%, 92%, light gases 19.69%, 15.35%, 11.53%, 7.77%, residues 0.31%, 0.28%, 0.25%, 0.30 recovered from the overall production. Catalytic conversion rates of four experiments as waste HD-PE into renewable hydrocarbons fuel was found 79%, 82%, 84%, 91%, light gases 20.50%, 17.55%, 15.65%, 8.59%, residues 0.50%, 0.49%, 0.35%, 0.41. Renewable hydrocarbon fuel was analyzed using ICP for sulfur contents, it was found very low sulfur content than ordinary fuel. It was observed that it is the only degradation of virgin and waste HD-PE but not creating any other reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available