4.7 Article

On the compressive deformation behavior of new beta titanium alloys designed by d-electron method

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 746, Issue -, Pages 206-217

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2018.02.212

Keywords

Beta titanium alloys; d-electron method; Deformation mechanism; Twinning; Stress-induced martensite; Stability

Ask authors/readers for more resources

Three beta titanium alloys in the Ti-Al-Mo-Cr-V system have been designed using the d-electron method with the aim of activating different combinations of deformation mechanisms. In this regard Ti-4Al-7Mo-3V-3Cr (Ti-4733), Ti-3Al-5Mo-7V-3Cr (Ti-3573) and Ti-3Al-8Mo-7V-3Cr (Ti-3873) alloys have been designed and compared with a commercial Ti-5Al-5Mo-5V-3Cr (Ti-5553) alloy. To evaluate the accuracy of the d-electron theoretical predictions, uniaxial compression tests were performed at room temperature. Different characterization methods including X-ray diffraction, electron backscatter diffraction, optical and transmission electron microscopy were used to investigate the microstructural evolution and deformation mechanisms. As a result of the modified deformation mechanisms, all the designed alloys showed enhanced compressive properties in comparison to the Ti-5553 alloy in beta single phase state. It was found that with increasing stability of the beta phase, the deformation mechanism of the new Ti-alloys gradually changes from slip + stress-induced martensitic transformation to slip + stress-induced martensitic transformation + mechanical twinning and finally to slip + mechanical twinning. The results showed that in the case of twinning the prediction by the d-electron method is consistent with experimental observations whereas regarding the stress-induced martensitic transformation this method should be used with considering an expanded martensite region on the lower portion of the d-electron phase stability map. (c) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available