4.7 Article

Ultrathin vanadium pentoxide nanobelt for ethanol-sensing applications: Experimental and ab initio study

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 735, Issue -, Pages 1480-1487

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2017.11.232

Keywords

V2O5 nanobelt; First principles; Ethanol; Gas sensor

Funding

  1. National Natural Science Foundation of China [61274074, 61271070, 61574100]

Ask authors/readers for more resources

In this work, a combined experimental and theoretical study on ultrathin nanobelts of vanadium pentoxide (V2O5) for ethanol-sensing applications is preformed. The ultrathin V2O5 nanobelts were experimentally prepared by an ethylenediaminetetraacetic acid (EDTA)-medicated hydrothermal method followed by a mild annealing at 350 degrees C in air. The chelating and capping effect of EDTA facilitate the one-dimensional (1D) preferential growth of ultrathin nanobelts. Gas-sensing measurement reveals that the as-synthesized ultrathin V2O5 nanobelts are highly sensitive to ethanol gas with several ppm level at operating temperature of 250 degrees C. Based on the structural characterization of experimental sample, the nanobelt model was constructed and the surface adsorption of ethanol molecule was investigated by density functional theory (DFT) calculation. It is found that surface adsorption of ethanol tunes the electronic structure of V2O5 nanobelt considerably and cause an n-doping effect. Further atomic Mulliken charge population analysis reveals quantitatively the donation of electrons from the adsorbed ethanol to the surface. The calculated electronic properties are correlated to the experimental measurement of sensing response. Meanwhile the possible adsorption reaction of ethanol on V2O5 nanobelt is proposed based on the geometrical calculation for adsorption configuration. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available