4.7 Article

Carbon-coated hierarchical spinel Fe1.5V1.5O4 nanorods: A promising anode material for enhanced lithium storage

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 746, Issue -, Pages 108-115

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2018.02.093

Keywords

Iron vanadates; Spinel structure; Hierarchical; Carbon layer; Lithium-ion batteries; Capacitive contribution

Funding

  1. National Nature Science Foundations of China [51772257]
  2. Doctor Foundation of Shandong Province [ZR2017BB081]

Ask authors/readers for more resources

In this work, a facile synthesis strategy was used to fabricate the carbon-coated new spinel Fe1.5V1.5O4 nanorods. The initial obtained precursor was prepared by a facile solvothermal process. After it was treated by different methods, hierarchical Fe1.5V1.5O4@C nanorods consisted of Fe1.5V1.5O4 primary nanoparticles with different particle sizes could be obtained. As anode materials for lithium ion batteries, the hierarchical Fe1.5V1.5O4@C nanorods composed of smaller primary particles show higher reversible capacity, better cycling performance and rate capability. Its reversible capacity can retain at 753 mAh g(-1) and 709 mAh g(-1) even cycled at 0.5 A g(-1) and 2 A g(-1) after 100 cycles and 1000 cycles, respectively. The excellent lithium storage performance of carbon-coated Fe1.5V1.5O4 nanorods is dependent on the spinel crystal structure, unique hierarchical structure, and synergistic effect of active materials and carbon layer in the composites. The results of CV curves imply that the overall capacity upon cycling is determined by both of the surface-controlled capacitive contribution and diffusion-controlled Li+ intercalation process. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available