4.3 Article

Spatial Two-Tissue Compartment Model for Dynamic Contrast-Enhanced Magnetic Resonance Imaging

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/rssc.12057

Keywords

Gaussian Markov random fields; Hierarchical Bayesian model; Multicompartment models; Non-linear regression; Oncology; Spatial regularization

Funding

  1. Deutsche Forschungsgemeinschaft grant
  2. [DFG SCHM 2747/1-1]

Ask authors/readers for more resources

In the quantitative analysis of dynamic contrast-enhanced magnetic resonance imaging compartment models allow the uptake of contrast medium to be described with biologically meaningful kinetic parameters. As simple models often fail to describe adequately the observed uptake behaviour, more complex compartment models have been proposed. However, the non-linear regression problem arising from more complex compartment models often suffers from parameter redundancy. We incorporate spatial smoothness on the kinetic parameters of a two-tissue compartment model by imposing Gaussian Markov random-field priors on them. We analyse to what extent this spatial regularization helps to avoid parameter redundancy and to obtain stable parameter point estimates per voxel. Choosing a full Bayesian approach, we obtain posteriors and point estimates by running Markov chain Monte Carlo simulations. The approach proposed is evaluated for simulated concentration time curves as well as for in vivo data from a breast cancer study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available