4.7 Article

SEMI-ANALYTIC MODELS FOR THE CANDELS SURVEY: COMPARISON OF PREDICTIONS FOR INTRINSIC GALAXY PROPERTIES

Journal

ASTROPHYSICAL JOURNAL
Volume 795, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/795/2/123

Keywords

galaxies: evolution; galaxies: formation; galaxies: luminosity function; mass function

Funding

  1. QEII Fellowship by the Australian Research Council
  2. STScI CANDELS [HST-GO-12060.12A, NSF-AST-1010033]
  3. Space Telescope Science Institute [HSTAR-12159.01-A]
  4. NASA [NAS5-26555]
  5. NSF [AST-08-08133]
  6. HST [HST GO-12060]
  7. Division Of Astronomical Sciences
  8. Direct For Mathematical & Physical Scien [0808133] Funding Source: National Science Foundation

Ask authors/readers for more resources

We compare the predictions of three independently developed semi-analytic galaxy formation models (SAMs) that are being used to aid in the interpretation of results from the CANDELS survey. These models are each applied to the same set of halo merger trees extracted from the Bolshoi high-resolution cosmological N-body simulation and are carefully tuned to match the local galaxy stellar mass function using the powerful method of Bayesian Inference coupled with Markov Chain Monte Carlo or by hand. The comparisons reveal that in spite of the significantly different parameterizations for star formation and feedback processes, the three models yield qualitatively similar predictions for the assembly histories of galaxy stellar mass and star formation over cosmic time. Comparing SAM predictions with existing estimates of the stellar mass function from z = 0-8, we show that the SAMs generally require strong outflows to suppress star formation in low-mass halos to match the present-day stellar mass function, as is the present common wisdom. However, all of the models considered produce predictions for the star formation rates (SFRs) and metallicities of low-mass galaxies that are inconsistent with existing data. The predictions for metallicity-stellar mass relations and their evolution clearly diverge between the models. We suggest that large differences in the metallicity relations and small differences in the stellar mass assembly histories of model galaxies stem from different assumptions for the outflow mass-loading factor produced by feedback. Importantly, while more accurate observational measurements for stellar mass, SFR and metallicity of galaxies at 1 < z < 5 will discriminate between models, the discrepancies between the constrained models and existing data of these observables have already revealed challenging problems in understanding star formation and its feedback in galaxy formation. The three sets of models are being used to construct catalogs of mock galaxies on light cones that have the same geometry as the CANDELS survey, which should be particularly useful for quantifying the biases and uncertainties on measurements and inferences from the real observations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available