4.4 Article

Comparative studies on the corrosion inhibition efficacy of ethanolic extracts of date palm leaves and seeds on carbon steel corrosion in 15% HCl solution

Journal

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY
Volume 32, Issue 17, Pages 1934-1951

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01694243.2018.1455797

Keywords

Date palm; carbon steel; acid corrosion; corrosion inhibition; natural product

Funding

  1. King Abdulaziz City for Science and Technology (KACST) under the National Science Technology Innovation Plan (NSTIP) [14-ADV2452-04]

Ask authors/readers for more resources

The work reports on the study carried out to comparatively assess the corrosion inhibition efficacy of crude ethanolic extracts of date palm leaves and seeds on X60 carbon steel corrosion in 15% HCl solution at 25-60 degrees C. The corrosion inhibition studies was carried out using weight loss and electrochemical (potentiodynamic polarization and linear polarization resistance) techniques. Preliminary phytochemical screening was performed in order to determine the phytoconstituents present in the crude extracts. The influence of extractive solvents on the corrosion inhibition performance of the extracts was also investigated. It is found that the crude extracts of both date palm leaves and seeds contain saponins, flavonoids, cardiac glycosides and reducing sugars. Tannins is only present in the leaves and absent in the seeds while anthraquinones is absent in both extracts. The crude ethanolic extracts inhibited the corrosion of X60 steel in the aggressive 15% HCl solution with the leaves extract showing superior performance. Inhibition efficiency increased with increase in concentration of the extracts and temperature. Potentiodynamic polarization results reveal that the extracts function as mixed type inhibitors. Corrosion inhibition occurs by virtue of adsorption of components of the extract on the steel surface and was found to follow Langmuir adsorption isotherm model. On the influence of the extractive solvents on the corrosion inhibition performance, the order of inhibition efficiency at 60 degrees C follows the trend DPLAE (73.6%) > DPLEE (62.5%) > DPSAE (59.9%) > DPSEE (55.9%) with the optimum extract concentration (2000ppm) studied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available