4.3 Article

Accuracy of cohesive laws with different shape for the shear behaviour prediction of bonded joints

Journal

JOURNAL OF ADHESION
Volume 95, Issue 4, Pages 325-347

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00218464.2018.1438895

Keywords

Cohesive zone models; epox; epoxides; fracture mechanics; J-integral; polyurethane

Ask authors/readers for more resources

The use of adhesive bonding as a joining technique is increasingly being used in many industries because of its convenience and high efficiency. Cohesive Zone Models (CZM) are a powerful tool for the strength prediction of bonded joints, but they require an accurate estimation of the tensile and shear cohesive laws of the adhesive layer. This work evaluated the shear fracture toughness (J(IIC)) and CZM laws of bonded joints for three adhesives with distinct ductility. The End-Notched Flexure (ENF) test geometry was used. The experimental work consisted of the shear fracture characterization of the bond by the J-integral. Additionally, by this technique, the precise shape of the cohesive law was defined. For the J-integral, digital image correlation was used for the evaluation of the adhesive layer shear displacement at the crack tip during the test, coupled to a Matlab sub-routine for extraction of this parameter automatically. Finite Element Method (FEM) simulations were carried out in Abaqus (R) to assess the accuracy of triangular, trapezoidal and linear-exponential CZM laws in predicting the experimental behaviour of the ENF tests. As output of this work, fracture data is provided in shear for the selected adhesives, allowing the subsequent strength prediction of bonded joints.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available