4.7 Article

LINKING THE SPIN EVOLUTION OF MASSIVE BLACK HOLES TO GALAXY KINEMATICS

Journal

ASTROPHYSICAL JOURNAL
Volume 794, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/794/2/104

Keywords

accretion, accretion disks; black hole physics; galaxies: active; galaxies: evolution; galaxies: kinematics and dynamics; quasars: supermassive black holes

Funding

  1. European Union's Seventh Framework Program (FP7/PEOPLE-CIG) through the Marie Curie Career Integration Grant GALFORMBHS [PCIG11-GA-2012-321608]
  2. Deutsches Zentrum fur Luft-und Raumfahrt (DLR) through the DFG [SFB/TR 7]

Ask authors/readers for more resources

We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e. g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad K alpha iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available