4.1 Article

ESNATS Conference - The Use of Human Embryonic Stem Cells for Novel Toxicity Testing Approaches

Journal

ATLA-ALTERNATIVES TO LABORATORY ANIMALS
Volume 42, Issue 2, Pages 97-113

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/026119291404200203

Keywords

in vitro testing; neurotoxicity; omics technologies; reproductive toxicity; stem cells; toxicokinetics

Ask authors/readers for more resources

The main achievements and results of the ESNATS project (Embryonic Stem Cell-based Novel Alternative Testing Strategies) were presented at the final project conference that was held on 15 September 2013, the day before the traditional EUSAAT (European Society for Alternatives to Animal Testing) Congress in Linz, Austria. The ESNATS project was an FP7 European Integrated Project, running from 2008 to 2013, the aim of which was to develop a novel toxicity testing platform based on embryonic stem cells (ESCs), and in particular, human ESC (hESCs), to accelerate drug development, reduce related R&D costs, and propose a powerful alternative to animal tests in the spirit of the Three Rs principles. Altogether, ESNATS offered the first proof of concept that hESCs can be used to create robust, reproducible and ready-to use test assays for predicting human toxicity. In the end, essentially five test systems were developed to an adequate level for entering possible pre-validation procedures. These methods are based on hESCs, and can be combined to study the possible effects, on the human embryo, of exposure to a chemical during the early stages of development. In addition to the presentations by the main project partners, external speakers were invited to give lectures on relevant topics, both in the field of neurotoxicity and, more generally, on the applicability of hESCs in the development of advanced in vitro tests.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available