4.6 Article

Thermomechanical formulation for micromechanical elasto-plasticity in granular materials

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 138, Issue -, Pages 64-75

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2017.12.029

Keywords

Constitutive relations; Thermodynamics; Elasticity; Plasticity; Granular material; Micromechanics

Categories

Funding

  1. National Natural Science Foundation of China [51579179]
  2. United States National Science Foundation [CMMI-1068528]
  3. China Scholarship Council

Ask authors/readers for more resources

The aim of this paper is to answer the question: how to construct a thermodynamically consistent micromechanical model and to analyze the existing micromechanical models from an energy perspective. For this purpose, we extended the framework of thermodynamics to micromechanical models by considering the energy stored and dissipated at the inter-particle contacts. In the suggested framework, the Helmholtz free energy and the dissipation energy at the macro scale are equaled to the volumetric average of the Helmholtz free energy and the dissipation energy at the micro scale. Consequently, the elastoplastic formulation at Inter-particle contacts can be obtained from the expressions of the micro free energy and the micro dissipation potentials. A thermodynamically consistent micromechanical model has been constructed on the basis of the static hypothesis. An isotropic compression and several triaxial tests were simulated with the model to analyze the energy conservation and dissipation under loading. Free energy and dissipation energy were computed at both micro and macro scales, and the orientation of the failure plane was explained by the evolution of the local dissipation energy. The maximum micro dissipation energy agreed with the static hypothesis for which, when one direction reaches the limit state, the rupture at the macro scale is obtained. The model has been implemented into a finite element code, and with this code a biaxial compression test was performed. Strain localization appeared, and the orientations of the shear band displayed by either the accumulated deviatoric plastic shear strain or the dissipative energy were consistent. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available