4.7 Article

Origin of double-peak precipitation hardening in metallic alloys

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 111, Issue -, Pages 152-167

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2018.07.016

Keywords

Double-peak precipitation hardening; Discrete dislocation dynamics simulation; Molecular dynamics simulation; Precipitate shearing model; Precipitation hardening mechanisms

Funding

  1. National Natural Science Foundation of China [U1730106, 11672193]
  2. Kingboard Professorship in Materials Engineering
  3. National Science Foundation CAREER Award [CMMI-1454072]

Ask authors/readers for more resources

Whereas conventional precipitation hardening is well-known to feature a single hardness peak, recently, double-peak precipitation hardening was observed, where the first peak hardness is higher than the second conventional one, thus offering a new approach to strengthen materials. Yet, classical precipitation strengthening models fail to predict such high strengthening in the early aging stage. In this work, molecular dynamics simulations were firstly performed to obtain a realistic dislocation-precipitate interaction law at the nano-scale, which was introduced into the discrete dislocation dynamics (DDD) method so as to investigate the precipitation hardening effects at the micro-scale. The DDD simulations correctly predict the double-peak hardening, namely, the critical resolved shear stress (CRSS) for a dislocation passing through a precipitate field first decreases, then increases, and finally decreases, as the precipitate radius r(p) increases. Then, a precipitate shearing model was developed, which agrees well with the DDD simulations and experimental observations. Based on the DDD simulations and theoretical analysis, the three CRSS regimes were found to be controlled by coherency strengthening (CRSS proportional to r(p)(-1/2)), chemical strengthening (CRSS and Orowan mechanism (CRSS proportional to -r(p)(-1)), respectively. Finally, a universal law for the inverse relation between the CRSS and precipitate size at the second, conventional peak was unveiled, while the first peak was found to occur favorably for rapid precipitation in the early aging stage. This work provides new insights into precipitation hardening in general and double-peak hardening in particular, which are of great importance for alloy design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available