4.7 Article

Disruptive SCYL1 Mutations Underlie a Syndrome Characterized by Recurrent Episodes of Liver Failure, Peripheral Neuropathy, Cerebellar Atrophy, and Ataxia

Journal

AMERICAN JOURNAL OF HUMAN GENETICS
Volume 97, Issue 6, Pages 855-861

Publisher

CELL PRESS
DOI: 10.1016/j.ajhg.2015.10.011

Keywords

-

Funding

  1. Interdisciplinary Center for Clinical Research Tubingen [1970-0-0]
  2. European Union [PIOF-GA-2012-326681]
  3. German Ministry for Education and Research [01GM1408B]
  4. NIH [5R01NS072248, 1R01NS075764, 5R01NS054132]

Ask authors/readers for more resources

Hereditary ataxias comprise a group of genetically heterogeneous disorders characterized by clinically variable cerebellar dysfunction and accompanied by involvement of other organ systems. The molecular underpinnings for many of these diseases are widely unknown. Previously, we discovered the disruption of Scyl1 as the molecular basis of the mouse mutant mdf, which is affected by neurogenic muscular atrophy, progressive gait ataxia with tremor, cerebellar vermis atrophy, and optic-nerve thinning. Here, we report on three human individuals, from two unrelated families, who presented with recurrent episodes of acute liver failure in early infancy and are affected by cerebellar vermis atrophy, ataxia, and peripheral neuropathy. By whole-exome sequencing, compound-heterozygous mutations within SCYL1 were identified in all affected individuals. We further show that in SCYL1-deficient human fibroblasts, the Golgi apparatus is massively enlarged, which is in line with the concept that SCYL1 regulates Golgi integrity. Thus, our findings define SCYL1 mutations as the genetic cause of a human hepatocerebellar neuropathy syndrome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available