4.7 Article

Aberrant Thalamocortical Connectivity in Juvenile Myoclonic Epilepsy

Journal

INTERNATIONAL JOURNAL OF NEURAL SYSTEMS
Volume 28, Issue 1, Pages -

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0129065717500344

Keywords

Juvenile myoclonic epilepsy; functional connectivity; thalamus; resting-state fMRI

Funding

  1. National Nature Science Foundation of China [81271547, 81330032, 81371636, 81471638]
  2. PCSIRT [IRT0910]
  3. '111' Project [B12027]

Ask authors/readers for more resources

The purpose of this study was to investigate the functional connectivity (FC) of thalamic subdivisions in patients with juvenile myoclonic epilepsy (JME). Resting state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were acquired from 22 JME and 25 healthy controls. We first divided the thalamus into eight subdivisions by performing independent component analysis on tracking fibers and clustering thalamus-related FC maps. We then analyzed abnormal FC in each subdivision in JME compared with healthy controls, and we investigated their associations with clinical features. Eight thalamic sub-regions identified in the current study showed unbalanced thalamic FC in JME: decreased FC with the superior frontal gyrus and enhanced FC with the supplementary motor area in the posterior thalamus increased thalamic FC with the salience network (SN) and reduced FC with the default mode network (DMN). Abnormalities in thalamo-prefrontocortical networks might be related to the propagation of generalized spikes with frontocentral predominance in JME, and the network connectivity differences with the SN and DMN might be implicated in emotional and cognitive defects in JME. JME was also associated with enhanced FC among thalamic sub-regions and with the basal ganglia and cerebellum, suggesting the regulatory role of subcortical nuclei and the cerebellum on the thalamo-cortical circuit. Additionally, increased FC with the pallidum was positive related with the duration of disease. The present study provides emerging evidence of FC to understand that specific thalamic subdivisions contribute to the abnormalities of thalamic-cortical networks in JME. Moreover, the posterior thalamus could play a crucial role in generalized epileptic activity in JME.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available