3.8 Proceedings Paper

Microwave plasma torches used for hydrogen production

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1742-6596/516/1/012002

Keywords

-

Ask authors/readers for more resources

A microwave plasma torch operating at 2.45 GHz and atmospheric pressure has been used as a medium and a tool for decomposition of alcohol in order to produce molecular hydrogen. Plasma in a gas mixture of argon and ethanol/methanol, with or without water, has been created using a waveguide surfatron launcher and a microwave generator delivering a power in the range 0.2-2.0 kW. Mass, Fourier Transform Infrared, and optical emission spectrometry have been applied as diagnostic tools. The decomposition yield of methanol was nearly 100 % with H-2, CO, CO2, H2O, and solid carbon as the main reaction products. The influence of the fraction of Ar flow through the liquid ethanol/methanol on H-2, CO, and CO2 partial pressures has been investigated, as well as the dependence of the produced H-2 flow on the total flow and power. The optical emission spectrum in the range 250-700 nm has also been detected. There is a decrease of the OH(A-X) band intensity with the increase of methanol in the mixture. The emission of carbon atoms in the near UV range (240-300 nm) exhibits a significant increase as the amount of alcohol in the mixture grows. The obtained results clearly show that this microwave plasma torch at atmospheric pressure provides an efficient plasma environment for hydrogen production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available