4.5 Article

Droplet splashing on thin moving films at high Weber numbers

Journal

INTERNATIONAL JOURNAL OF MULTIPHASE FLOW
Volume 101, Issue -, Pages 202-211

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmultiphaseflow.2018.01.015

Keywords

Droplet impact; High Weber number; Thin moving films; Thickness measurement; Lamella breakup; Hole formation

Categories

Funding

  1. Deutsche Forschungsgemeinschaft [BA 4953-3]

Ask authors/readers for more resources

The influence of a thin moving film on the splashing of droplets was investigated experimentally at high Weber numbers. This study was conducted using a flywheel experiment fitted with a new film generation system, which allows for the production of thin films with variable mean velocity for different liquids. The thickness was measured using a miniature confocal-chromatic sensor during the rotation of the flywheel. Using shadowgraph techniques, the splashing process was analyzed and the evolution of the crown height and diameter were described. It was also demonstrated that the film velocity and thickness influence the development of the crown geometry. The combination of a high-speed and a high-resolution camera allowed us to observe two different instabilities that accelerate the breakup process, leading to a complete atomization of the crown into secondary droplets. The instabilities observed were: spreading holes and a separation from the crown base. Using the formed holes, we calculated the lamella thickness using two different methods, yielding a constant value of 31 +/- 3 mu m for all the experiments. We estimated both the time at which the hole instabilities appeared and the time at which the breakup process began. Moreover, it was demonstrated that small bubbles in the lamella are responsible for the hole formation. We also showed that the entire breakup process is delayed by increasing the film flow velocity, regardless of the Weber number. (C) 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available