4.7 Article

OBSERVATION AND MODELING OF GEOCORONAL CHARGE EXCHANGE X-RAY EMISSION DURING SOLAR WIND GUSTS

Journal

ASTROPHYSICAL JOURNAL
Volume 796, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/796/1/28

Keywords

solar wind; X-rays: diffuse background

Funding

  1. NASA's Chandra X-ray Center Archival Research Program [SP1-12001X]
  2. Smithsonian Institution's Competitive Grants Program for Science
  3. NASA [NAS8-39073]

Ask authors/readers for more resources

Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O7+ collide with neutral gas, including the Earth's tenuous outer atmosphere (exosphere or geocorona) and hydrogen and helium from the local interstellar medium drifting through the heliosphere. This geocoronal and heliospheric emission comprises a significant and varying fraction of the soft X-ray background (SXRB) and is seen in every X-ray observation, with the intensity dependent on solar wind conditions and observation geometry. Under the right conditions, geocoronal emission can increase the apparent SXRB by roughly an order of magnitude for an hour or more. In this work, we study a dozen occasions when the near-Earth solar wind flux was exceptionally high. These gusts of wind lead to abrupt changes in SWCX X-ray emission around Earth, which may or may not be seen by X-ray observatories depending on their line of sight. Using detailed three-dimensional magnetohydrodynamical simulations of the solar wind's interaction with the Earth's magnetosphere, and element abundances and ionization states measured by ACE, we model the time-dependent brightness of major geocoronal SWCX emission lines during those gusts and compare with changes in the X-ray background measured by the Chandra X-ray Observatory. We find reasonably good agreement between model and observation, with measured geocoronal line brightnesses averaged over 1 hr of up to 136 photons s(-1) cm(-2) sr(-1) in the O vII K alpha triplet around 564 eV.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available