4.7 Article

Multi-criteria optimization of an integrated energy system with thermoelectric generator, parabolic trough solar collector and electrolysis for hydrogen production

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 43, Issue 31, Pages 14140-14157

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.05.143

Keywords

Solar collector; PEME; Multi-objective optimization; TEG; PTSC; Thermoelectric generator

Ask authors/readers for more resources

In this research paper, a newly energy system consisting of parabolic trough solar collectors (PTSC) field, a thermoelectric generator (TEG), a Rankine cycle and a proton exchange membrane (PEM) is proposed. The integration is performed by establishing a TEG instead of the condenser as power generation and cooling unit thereafter surplus power output of the TEG is transferred to the PEM electrolyzes for hydrogen production. The integrated renewable energy system is comprehensively modeled and influence of the effective parameters is investigated on exergy and economic indicators through the parametric study to better understand the system performance. Engineering equation solver (EES) as a potential engineering tool is used to simulate the system and obtain the desired results. In order to optimize the system, a developed multi-objective genetic algorithm MATLAB code is applied to determine the optimum operating conditions of the system. Obtained results demonstrate that at optimum working condition from exergy viewpoint, exergy efficiency and total cost are 12.76% and 61.69 $/GJ, respectively. Multi-objective optimization results further show that the final optimal point which is well-balanced between exergy efficiency and total cost, has the maximum exergy efficiency of 13.29% and total cost of 63.96 $/GJ, respectively. The corresponding values for exergy efficiency and total cost are 10.01% and 60.21 $/GJ for optimum working condition from economic standpoint. Furthermore, hydrogen production at well-balanced operating condition would be 2.28 kg/h. Eventually, the results indicate that establishing the TEG unit instead of the condenser is a promising method to optimize the performance of the system and reduce total cost. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available