4.7 Article

Hydrogen adsorption in metal- organic frameworks (MOFs): Effects of adsorbent architecture

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 43, Issue 14, Pages 7072-7080

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.02.160

Keywords

MOF; Adsorbent designing; Exploitation effect

Funding

  1. Ferdowsi University of Mashhad, Iran [3/43117-1395/12/17]

Ask authors/readers for more resources

In this work, the effect of metal-organic framework (MOF) structure of MOF-5 was investigated in hydrogen adsorption based on the degree of solvent exploitation and/or sample preparation procedures. In this regard, the characterization analyses of FT-IR, BET and PXRD pattern of MOF-5 samples were used to compare their architectures with different specific surface area and porosity in hydrogen adsorption. The results show that the pore size distribution of samples is related to the main peaks in the micropores, mesopores and macropores regions. One can found that the adsorption of hydrogen at room temperature (296 K) is controlled by diffusion of adsorbed hydrogen inside the pores of the crystals. Larger diffusivities at a given pressure are expected due to diffusion in macroporous. The values of heats of adsorption on prepared sample are calculated as 3.68 and 12.45 kJ mol(-1) for meso and macroporous regions, respectively. These results are suggesting that weak interactions between the adsorbed hydrogen molecules and MOF crystals is occur in mesoporous regions and the adsorption into macroprous which are filling in high temperature shows strong interaction. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available