4.7 Article

Experimental study on mixing and stratification of buoyancy-driven flows produced by continuous buoyant source in narrow inclined tank

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 121, Issue -, Pages 453-462

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2018.01.010

Keywords

Buoyancy-driven flow; Inclined tank; Mass transfer; Density stratification; Mixing; Convection

Funding

  1. National Natural Science Foundation of China (NSFC) [51578087]
  2. National Key R&D Program of China [2016YFC0800603, 2016YFC080060304]
  3. China Postdoctoral Science Foundation [2017M622967]

Ask authors/readers for more resources

In this study, a series of experiments are performed to investigate the mixing and stratification of buoyancy-driven flows in a narrow inclined tank. The buoyancy-driven flow is produced by continuously releasing dense brine into an inclined tank filled with fresh water. Two distinct mixing regimes are identified. In one of the regimes, fresh water enters the tank because of the negative pressure induced by the brine plume. In the other regime, the fresh water inflow is mainly caused by the stack effect. A light attenuation technique is used to measure the density stratification and distribution in the tank. The effects of the buoyant source volume flow rate, source buoyancy flux, and source location on the mixing and stratification are investigated. The results indicate that the mixing between the buoyant and ambient fluids is strengthened by the increase in the source volume flow rate and the height difference between the source location and the lower end of the tank. However, the current downstream of the source becomes more stratified as the source buoyancy flux increases. A dimensionless parameter, A, is proposed to evaluate the overall mixing intensity in the tank. As A increases, the flow changes from a bidirectional one to a unidirectional one. The evolution of reduced gravity along the longitudinal direction is also investigated. The results indicate that fresh water is entrained into the brine layer if the thickness of the brine layer is less than the tank height. Otherwise, the reduced gravity remains constant along the longitudinal direction of the tank. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available