3.8 Proceedings Paper

Synthesis and CO2 Adsorption Study of Modified MOF-5 with Multi-Wall Carbon nanotubes and Expandable Graphite

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4898442

Keywords

-

Ask authors/readers for more resources

MOF-5 was synthesized by solvothermal method and its reactivation under anhydrous conditions. This research is conducted to investigate the effect of MOF-5 and MOF-5 modified with multi-wall carbon nanotubes (MWCNTs) and expandable graphite (EG) on the performance of CO2 adsorption. The synthesized MOFs were characterized using Field emission scanning electron microscopy (FESEM) for surface morphology, Thermogravimetric analysis (TGA) for thermal stability, X-ray diffraction (XRD) for crystals plane, Brunauer-Emmet-Teller (BET) for surface area and CO2 adsorption. The result had showed that the modified MOF-5 enhanced the CO2 adsorption compared to the pure MOF-5. The increment in the CO2 uptake capacities of MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MOF-5 by multi-walled carbon nanotube and EG incorporation. The BET surface area of the synthesized MOF-5@MWCNTs is more than MOF-5. The CO2 sorption capacities of MOF-5 and MOF-5@MWCNTs were observed to increase from 0.00008 to 0.00048 mol g(-1) at 298 K and 1 bar. The modified MOF-5@MWCNTs resulted in the highest CO2 adsorption followed by the modified MOF-5@EG and lastly, MOF-5.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available