4.7 Article

AN INDEPENDENT ANALYSIS OF THE BROWN DWARF ATMOSPHERE MONITORING (BAM) DATA: LARGE-AMPLITUDE VARIABILITY IS RARE OUTSIDE THE L/T TRANSITION

Journal

ASTROPHYSICAL JOURNAL
Volume 797, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/797/2/120

Keywords

brown dwarfs; stars: atmospheres; stars: variables: general

Funding

  1. Giacconi Fellowship through the Space Telescope Science Institute under NASA [NAS5-26555]
  2. ESO Telescopes at the La Silla Paranal Observatory [188.C-0493]

Ask authors/readers for more resources

Observations of variability can provide valuable information about the processes of cloud formation and dissipation in brown dwarf atmospheres. Here we report the results of an independent analysis of archival data from the Brown dwarf Atmosphere Monitoring (BAM) program. Time series data for 14 L and T dwarfs reported to be significantly variable over timescales of hours were analyzed. We confirm large-amplitude variability (amplitudes > 2%) for 4 out of 13 targets and place upper limits of 0.7%-1.6% on variability in the remaining sample. For two targets we find evidence of weak variability at amplitudes of 1.3% and 1.6%. Based on our revised classification of variable objects in the BAM study, we find strong variability outside the L/T transition to be rare at near infrared wavelengths. From a combined sample of 81 L0-T9 dwarfs from the revised BAM sample and the variability survey of Radigan et al., we infer an overall observed frequency for large-amplitude variability outside the L/T transition of 3.2(-1.8)(+2.8)%, in contrast to 24(-9)(+11) % for L9-T3.5 spectral types. We conclude that while strong variability is not limited to the L/T transition, it occurs more frequently in this spectral type range, indicative of larger or more highly contrasting cloud features at these spectral types.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available