4.6 Article

Improved thermal comfort modeling for smart buildings: A data analytics study

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2018.06.026

Keywords

Thermal comfort; Machine learning; Data analytics; Smart buildings; Smart city; Smart grid

Ask authors/readers for more resources

Thermal comfort is a key consideration in the design and modeling of buildings and is one of the main steps to achieving smart building control and operation. Existing solutions model thermal comfort based on factors such as indoor temperature. However, these factors are not directly controllable by building operations, and instead are a by-product of complex interactions between controllable parameters such as air conditioning setpoint and other environmental conditions. In this paper, we use machine learning (ML) to bridge the gap between controllable building parameters and thermal comfort, by conducting an extensive study on the efficacy of different ML techniques for modeling comfort levels. We show that neural networks are especially effective, and achieve 98.7% accuracy on average. We also show these networks can lead to linear models where thermal comfort score scales linearly with the HVAC setpoint, and that the linear models can be used to quickly and accurately find the optimal setpoint for the desired comfort level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available