4.7 Article

In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 118, Issue -, Pages 2121-2130

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2018.07.062

Keywords

In-situ biosynthesis; Silver nanoparticles; Antimicrobial cotton

Ask authors/readers for more resources

In the realm of green synthesis of metals nanoparticles for medical textile application, silver nanoparticles (AgNPs) were biosynthesized in situ cotton fabrics for the first time by using fungi for rendering cotton fabrics antimicrobial activity with abroad range towards different pathogenic organisms. Herein, five different isolated fungi from medicinal plants were identified and optimized their growth media prior examined their ability to reduce Ag+ ions to AgNPs in-situ cotton fabrics along with ex-situ method. Synthesis of AgNPs were characterized by making use of instruments e.g. UV-vis spectroscopy, Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared (FTIR). Whereas antimicrobial activities of the resultant cotton fabrics were investigated against Gram positive (S. aureus ATCC29213), Gram negative (E. coil ATCC 25922), Yeast (C albicans ATCC10321) and, fungi (A. niger NRC 53). Results revealed the successful biosynthesis of AgNPs using different fungus strains whether in-situ cotton fabrics or ex-situ manner. The size of the resultant AgNPs by ex-situ method were varied (5-20 nm). The antimicrobial activity of the in-situ treated cotton samples exhibited different behaviors towards both pathogenic bacteria and fungi. This manner opens up a new way to discover the ability of nanobiotechnology to provide world with substitutional aids mimic to synthetic materials. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available