4.7 Article

A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 117, Issue -, Pages 418-426

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2018.05.211

Keywords

Hydrogel; Starch; Stimuli-responsive; Magnetite nanoparticles; De novo drug delivery

Funding

  1. Payame Noor University

Ask authors/readers for more resources

A novel starch-based stimuli-responsive magnetite nanohydrogel (MNHG), namely Fe3O4-g-[poly(N-isopropylacrylamide-co-maleic anhydride)]@strach; Fe3O4-g-(PNIPAAm-co-PMA)@starch, was successfully developed for targeted delivery of doxorubicin (DOX) as an anticancer drug. First, magnetite nanoparticles (MNPs) was modified using chloroacetyl chloride moiety followed by grafting of NIPAAm and MA monomers through ATRP technique. The resultant Fe3O4-g-(PNIPAAm-co-PMA) nanocomposite was crosslinked through the reaction between the anhydride group of MA and hydroxyl groups of starch to afford a Fe3O4-g-(PNIPAAm-co-PMA)@starch MNHG. The chemical structure of the synthesized materials were confirmed using Fourier transform infrared (FTIR) spectroscopy. Furthermore, morphology, size, thermal property, and magnetic properties of the synthesized MNHG were studied. This MNHG was loaded with DOX, and drug loading and encapsulation efficiencies as well as pH- and temperature-responsive drug release behavior of the fabricated MNHG were also evaluated. As results, we envision that the developed MNHG has potential as de novo drug delivery system (DDS) due to its smart physicochemical features. (C) 2018 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available