4.6 Article

RT-qPCR analysis of human melanoma progression-related genes - A novel workflow for selection and validation of candidate reference genes

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2018.05.007

Keywords

Hypoxanthine phosphoribosyltransferase 1 (HPRT1); Glucuronidase beta (GUSB); Ribosomal protein S23 (RPS23); Phosphoglycerate kinase 1 (PGK1); Endoplasmic reticulum aminopeptidase 1 (ERAP1)

Funding

  1. National Science Centre, Poland [2016/21/B/NZ3/00348]
  2. Institute of Zoology and Biomedical Research, Jagiellonian University [K/ZDS/007347]

Ask authors/readers for more resources

The objective of this study was to identify a normalizer or combination of normalizers for quantitative evaluation of the expression of a target gene of interest during melanoma progression. Adult melanocytes, uveal primary melanoma cells and cutaneous primary and metastatic melanoma cells were used to construct a panel of 14 experimental models reflecting cancer promotion and progression. Hypoxanthine phosphoribosyltransferase 1 (HPRT1), glucuronidase beta (GUSB), ribosomal protein S23 (RPS23), phosphoglycerate kinase 1 (PGK1) and small nuclear ribonucleoprotein progression. Adult melanocytes, uveal primary melanoma cells and cutaneous primary and metastatic melanoma cells were used to construct a panel of 14 experimental models reflecting cancer promotion and progression. Hypoxanthine phosphoribosyltransferase 1 (HPRT1), glucuronidase beta (GUSB), ribosomal protein S23 (RPS23), phosphoglycerate kinase 1 (PGK1) and small nuclear ribonucleoprotein polypeptide A (SRNPA) were chosen as candidate housekeeping genes. NormFinder software was used to identify the best reference gene or pair of reference genes from five candidate housekeeping genes, on the basis of expression stability in a given experimental model. The suitability of references was validated by normalizing the transcriptional activities of E-cadherin (CDH1), N-cadherin (CDH2) and endoplasmic reticulum aminopeptidase 1 (ERAP1) target genes. It has been shown that the relative expression of CDH2 and ERAP1 target genes in a given cell line may vary between experimental models, leading to biological misinterpretation. In view of this, we devised a strategy for improved selection of the best stable reference and for obtaining biologically consistent results. This strategy avoided experimental model- and normalizer-dependent conclusions concerning the relative expression of target gene, in the examined cell lines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available