4.6 Article

Design and development of an extrusion system for 3D printing biopolymer pellets

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-018-1843-y

Keywords

Pellet extrusion; Biopolymer printing; Extruder design; Fused deposition modeling; Polylactic acid

Funding

  1. Ministry of Business, Innovation, and Employment (MBIE) funding under High Value Manufacturing and Services (HVMS)

Ask authors/readers for more resources

The extrusion system is an integral part of any fused deposition style 3D printing technique. However, the extruder designs found in commercial and hobbyist printers are mostly suitable for materials in filament form. While printing with a filament is not a problem per se, the printing of materials that may not be readily available in the filament form or not commercially viable remains untapped, e.g., biopolymers and material blends. This is particularly an issue in the research and hobbyist space where the capability of printing a variety of materials or materials recycled from already printed parts may be of utmost importance. This paper presents a pellet-based extrusion system for the 3D printing of biopolymers. The system has been designed from the first principles and therefore can be extended to other materials with parameter adjustments or slight hardware modifications. A robust mechatronic design has been realized using an unconventional yet simplistic approach. The extrusion system uses a series of control factors to generate a consistent output of material over the course of a print. The platform and surrounding processes are set up so that software can be used to define the printing parameters; this allows a simpler adaption to different materials. The utility of the extruder is demonstrated through extensive printing and testing of the printed parts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available