4.7 Article

Inflammation induced ER stress affects absorptive intestinal epithelial cells function and integrity

Journal

INTERNATIONAL IMMUNOPHARMACOLOGY
Volume 55, Issue -, Pages 336-344

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.intimp.2017.12.016

Keywords

ER stress; Inflammation; Inflammatory bowel disease; Brush border membrane; Caco-2 cells

Ask authors/readers for more resources

Recent studies have linked impairment of intestinal epithelial function in inflammatory bowel disease to the disturbance of endoplasmic reticulum homeostasis (ER) in response to stress. Most studies are on goblet and Paneth cells, which are considered more susceptible to stress due to their role in the protection of intestinal epithelium against microbes and harmful substances. However, studies on the role of inflammation-induced ER stress in absorptive intestinal cells are scarce. In this study, we show, using Caco-2 cells as a model of intestinal epithelial barrier, that inducing ER stress using a cocktail mixture of pro-inflammatory mediators [TNF alpha (50 ng/ml), MCP1 (50 ng/ml), and IL-1 beta (25 ng/ml)] as observed in IBD patients induces ER stress and leads to significant changes in key proteins of the apical (sucrase-isomaltase (SI), dipeptidyl-peptidase (DPPIV), and ezrin) and basolateral (E-cadherin, zonula occludens (ZO-1), and connexin-43) membranes. Aberrant trafficking of SI, DPPIV was observed as early as 8 h post-inflammation-induced ER stress and even in the absence of loss of intestinal cell integrity. The observed effect was associated with a re-localization of ezrin, ZO-1, and connexin-43, key differentiation and junction proteins. Collectively, this study shows that disruption of the trafficking of key digestive enzymes of the intestinal epithelium occur in response to inflammation induced ER stress before the loss of monolayer integrity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available