4.7 Article

(TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening

Journal

INTERMETALLICS
Volume 95, Issue -, Pages 59-72

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.intermet.2018.01.017

Keywords

High-entropy alloys; Microstructure; Mechanical properties; Solid solution hardening; Alloy design

Funding

  1. National Natural Science Foundation of China [51571192]

Ask authors/readers for more resources

In this work, the evolution of microstructure and fundamental mechanical properties with Mo concentration in the arc-melted (TiZrNbTa)(100-x)Mo-x (0 <= x <= 20) high-entropy alloys (HEAs) are investigated. The arc-melted (TiZrNbTa)(100-x)Mo-x alloys structurally consist of two bcc phases. The change in volume fractions of two phases in the microstructure is insignificant with Mo concentration, at levels of similar to 75% for bcc1 and similar to 25% for bcc2. The increases in microhardness and Young's modulus of the alloys linearly scale with Mo concentration. To compromise the strength and ductility, the (TiZrNbTa)(90)Mo-10 exhibits an optimal combination of stiffness (E = 137 GPa), compressive yield strength (sigma(y) = 1370 MPa) and deformability (epsilon(p) approximate to 25%). In addition, it is indicated that dislocation widths in bcc lattice of refractory HEAs are insensitive to the alloying complexity, reflecting that the Peierls barrier is excluded as a predominant factor of strengthening. Furthermore, a simple model is proposed to reveal the solid solution hardening (SSH) in bcc refractory HEAs, in which the solid solutions are treated as an imposition of distortion-free and distorted lattices. By applying this model to archived refractory HEAs, the predicted yield strength agrees well with experimentally measured values. It provides a simple empirical tool used for predicting the strength of bcc refractory HEAs and to assist new alloy design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available